Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.519
Filter
1.
Trials ; 25(1): 328, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760804

ABSTRACT

BACKGROUND: The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS: We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION: Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION: The trial was registered at www. CLINICALTRIALS: gov on 5/31/2023 (NCT05881135). TRIAL STATUS: Currently enrolling.


Subject(s)
COVID-19 , Cytidine Diphosphate Choline , Randomized Controlled Trials as Topic , SARS-CoV-2 , Humans , Cytidine Diphosphate Choline/therapeutic use , Double-Blind Method , SARS-CoV-2/drug effects , COVID-19/complications , COVID-19 Drug Treatment , Clinical Trials, Phase II as Topic , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/complications , Treatment Outcome , Hypoxia/drug therapy , Male , Pandemics , Coronavirus Infections/drug therapy , Coronavirus Infections/complications , Hospitalization , Female , Betacoronavirus , Clinical Trials, Phase I as Topic , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , Administration, Intravenous , Adult
2.
Zhonghua Yi Xue Za Zhi ; 104(20): 1812-1824, 2024 May 28.
Article in Chinese | MEDLINE | ID: mdl-38782749

ABSTRACT

Although COVID-19 no longer constitutes a "public health emergency of international concern", which still has being spreading around the world at a low level. Small molecule drugs are the main antiviral treatment for novel coronavirus recommended in China. Although a variety of small-molecule antiviral drugs against COVID-19 have been listed in China, there is no specific drug recommendation for special populations. Society of Bacterial Infection and Resistance of Chinese Medical Association, together with the National Clinical Research Center for Respiratory Disease, and the National Center for Respiratory Medicine, organized domestic experts in various fields such as respiratory, virology, infection, critical care, emergency medicine and pharmacy to release Expert Consensus on the Clinical Application of Oral Small-Molecule Antiviral Drugs against COVID-19. The main content of this consensus includes the introduction of seven small-molecule antiviral drugs against COVID-19, focusing on the drug recommendations for 14 special groups such as the elderly, patients with complicated chronic diseases, tumor patients, pregnant women, and children, and providing suggestions for clinicians to standardize drug use.


Subject(s)
Antiviral Agents , COVID-19 , Pandemics , SARS-CoV-2 , Antiviral Agents/therapeutic use , Humans , Pneumonia, Viral/drug therapy , COVID-19 Drug Treatment , Coronavirus Infections/drug therapy , Consensus , Betacoronavirus , Administration, Oral , China , Pregnancy
3.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776389

ABSTRACT

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Subject(s)
Antiviral Agents , Prodrugs , SARS-CoV-2 , Animals , SARS-CoV-2/drug effects , Prodrugs/pharmacology , Prodrugs/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Mice , Administration, Oral , Chlorocebus aethiops , Vero Cells , COVID-19 Drug Treatment , COVID-19/virology , Virus Replication/drug effects , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleosides/chemistry , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Disease Models, Animal
4.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730463

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Subject(s)
Antiviral Agents , Histone Demethylases , Porcine epidemic diarrhea virus , Virus Replication , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/pharmacology , Virus Replication/drug effects , Histone Demethylases/antagonists & inhibitors , Swine , Chlorocebus aethiops , Swine Diseases/virology , Swine Diseases/drug therapy , Coronavirus Infections/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Vero Cells
5.
Biol Pharm Bull ; 47(5): 930-940, 2024.
Article in English | MEDLINE | ID: mdl-38692871

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2. At the entry step of SARS-CoV-2 infection, the viral envelope fuses with the host membrane dependent of viral spike (S) glycoproteins. From the screening of cholesterol derivatives, we found a new compound 26,27-dinorcholest-5-en-24-yne-3ß,20-diol (Nat-20(S)-yne) that inhibited the SARS-CoV-2 S protein-dependent membrane fusion in a syncytium formation assay. Nat-20(S)-yne exhibited the inhibitory activities of SARS-CoV-2 pseudovirus entry and intact SARS-CoV-2 infection in a dose-dependent manner. Among the variants of SARS-CoV-2, inhibition of infection by Nat-20(S)-yne was stronger in delta and Wuhan strains, which predominantly invade into cells via fusion at the plasma membrane, than in omicron strains. The interaction between receptor-binding domain of S proteins and host receptor ACE2 was not affected by Nat-20(S)-yne. Unlike 25-hydroxycholesterol, which regulates various steps of cholesterol metabolism, Nat-20(S)-yne inhibited only de novo cholesterol biosynthesis. As a result, plasma membrane cholesterol content was substantially decreased in Nat-20(S)-yne-treated cells, leading to inhibition of SARS-CoV-2 infection. Nat-20(S)-yne having a new mechanism of action may be a potential therapeutic candidate for COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Cholesterol , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Humans , COVID-19/virology , Cholesterol/metabolism , Vero Cells , Chlorocebus aethiops , Spike Glycoprotein, Coronavirus/metabolism , Animals , Virus Internalization/drug effects , Betacoronavirus/drug effects , Pandemics , COVID-19 Drug Treatment , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Angiotensin-Converting Enzyme 2/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology
6.
Bioorg Chem ; 147: 107379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643567

ABSTRACT

Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. It belongs to the 'Coronaviridae family', responsible for various diseases, including the common cold, SARS, and MERS. The COVID-19 pandemic, which began in March 2020, has affected 209 countries, infected over a million people, and claimed over 50,000 lives. Significant efforts have been made by repurposing several approved drugs including antiviral, to combat the COVID-19 pandemic. Molnupiravir is found to be the first orally acting efficacious drug to treat COVID-19 cases. It was approved for medical use in the UK in November 2021 and other countries, including USFDA, which granted approval an emergency use authorization (EUA) for treating adults with mild to moderate COVID-19 patients. Considering the importance of molnupiravir, the present review deals with its various synthetic strategies, pharmacokinetics, bio-efficacy, toxicity, and safety profiles. The comprehensive information along with critical analysis will be very handy for a wide range of audience including medicinal chemists in the arena of antiviral drug discovery especially anti-viral drugs against any variant of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Cytidine , Hydroxylamines , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Antiviral Agents/chemical synthesis , Hydroxylamines/therapeutic use , Hydroxylamines/chemistry , Hydroxylamines/pharmacology , COVID-19/virology , SARS-CoV-2/drug effects , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Cytidine/pharmacology , Cytidine/chemistry , Cytidine/chemical synthesis , Uridine/pharmacology , Uridine/analogs & derivatives , Uridine/chemical synthesis , Uridine/chemistry , Uridine/therapeutic use , Pandemics , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy
7.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570774

ABSTRACT

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Coronavirus/genetics , Quercetin/pharmacology , Quercetin/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/veterinary , Swine Diseases/drug therapy
8.
JAMA Netw Open ; 7(4): e247965, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652474

ABSTRACT

Importance: Numerous studies have provided evidence for the negative associations of the COVID-19 pandemic with mental health, but data on the use of psychotropic medication in children and adolescents after the onset of the COVID-19 pandemic are lacking. Objective: To assess the rates and trends of psychotropic medication prescribing before and over the 2 years after the onset of the COVID-19 pandemic in children and adolescents in France. Design, Setting, and Participants: This cross-sectional study used nationwide interrupted time-series analysis of outpatient drug dispensing data from the IQVIA X-ponent database. All 8 839 143 psychotropic medication prescriptions dispensed to children (6 to 11 years of age) and adolescents (12 to 17 years of age) between January 2016 and May 2022 in France were retrieved and analyzed. Exposure: Onset of COVID-19 pandemic. Main outcomes and Measures: Monthly rates of psychotropic medication prescriptions per 1000 children and adolescents were analyzed using a quasi-Poisson regression before and after the pandemic onset (March 2020), and percentage changes in rates and trends were assessed. After the pandemic onset, rate ratios (RRs) were calculated between estimated and expected monthly prescription rates. Analyses were stratified by psychotropic medication class (antipsychotic, anxiolytic, hypnotic and sedative, antidepressant, and psychostimulant) and age group (children, adolescents). Results: In total, 8 839 143 psychotropic medication prescriptions were analyzed, 5 884 819 [66.6%] for adolescents and 2 954 324 [33.4%] for children. In January 2016, the estimated rate of monthly psychotropic medication prescriptions was 9.9 per 1000 children and adolescents, with the prepandemic rate increasing by 0.4% per month (95% CI, 0.3%-0.4%). In March 2020, the monthly prescription rate dropped by 11.5% (95% CI, -17.7% to -4.9%). During the 2 years following the pandemic onset, the trend changed significantly, and the prescription rate increased by 1.3% per month (95% CI, 1.2%-1.5%), reaching 16.1 per 1000 children and adolescents in May 2022. Monthly rates of psychotropic medication prescriptions exceeded the expected rates by 11% (RR, 1.11 [95% CI, 1.08-1.14]). Increases in prescribing trends were observed for all psychotropic medication classes after the pandemic onset but were substantial for anxiolytics, hypnotics and sedatives, and antidepressants. Prescription rates rose above those expected for all psychotropic medication classes except psychostimulants (RR, 1.12 [95% CI, 1.09-1.15] in adolescents and 1.06 [95% CI, 1.05-1.07] in children for antipsychotics; RR, 1.30 [95% CI, 1.25-1.35] in adolescents and 1.11 [95% CI, 1.09-1.12] in children for anxiolytics; RR, 2.50 [95% CI, 2.23-2.77] in adolescents and 1.40 [95% CI, 1.30-1.50] in children for hypnotics and sedatives; RR, 1.38 [95% CI, 1.29-1.47] in adolescents and 1.23 [95% CI, 1.20-1.25] in children for antidepressants; and RR, 0.97 [95% CI, 0.95-0.98] in adolescents and 1.02 [95% CI, 1.00-1.04] in children for psychostimulants). Changes were more pronounced among adolescents than children. Conclusions and Relevance: These findings suggest that prescribing of psychotropic medications for children and adolescents in France significantly and persistently increased after the COVID-19 pandemic onset. Future research should identify underlying determinants to improve psychological trajectories in young people.


Subject(s)
COVID-19 , Pandemics , Psychotropic Drugs , SARS-CoV-2 , Humans , Child , Adolescent , COVID-19/epidemiology , Psychotropic Drugs/therapeutic use , Male , Female , Cross-Sectional Studies , France/epidemiology , Drug Prescriptions/statistics & numerical data , Practice Patterns, Physicians'/statistics & numerical data , Practice Patterns, Physicians'/trends , Interrupted Time Series Analysis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Betacoronavirus , Anti-Anxiety Agents/therapeutic use , Mental Disorders/drug therapy , Mental Disorders/epidemiology
9.
Obstet Gynecol ; 143(6): e149-e152, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38574363

ABSTRACT

BACKGROUND: Since the onset of the coronavirus disease (COVID-19) pandemic, a variety of long-COVID-19 symptoms and autoimmune complications have been recognized. CASES: We report three cases of autoimmune premature poor ovarian response in patients aged 30-37 years after mild to asymptomatic COVID-19 before vaccination, with nucleotide antibody confirmation. Two patients failed to respond to maximum-dose gonadotropins for more than 4 weeks, despite a recent history of response before having COVID-19. After a month of prednisone 30 mg, these two patients had normal follicle-stimulating hormone (FSH) levels, high oocyte yield, and blastocyst formation in successful in vitro fertilization cycles. All three patients have above-average anti-müllerian hormone levels that persisted throughout their clinical ovarian insufficiency. Two patients had elevated FSH levels, perhaps resulting from FSH receptor blockade. One patient, with a history of high response to gonadotropins 75 international units per day and below-normal FSH levels, had no ovarian response to more than a month of gonadotropins (525 international units daily), suggesting autoimmune block of the FSH glycoprotein and possible FSH receptor blockade. CONCLUSION: Auto-antibody production in response to COVID-19 before vaccination may be a rare cause of autoimmune poor ovarian response. Although vaccination is likely protective, further study will be required to evaluate the effect of vaccination and duration of autoimmune FSH or FSH receptor blockade.


Subject(s)
COVID-19 , Primary Ovarian Insufficiency , Receptors, FSH , SARS-CoV-2 , Humans , Female , COVID-19/immunology , COVID-19/complications , Primary Ovarian Insufficiency/immunology , Primary Ovarian Insufficiency/drug therapy , Adult , SARS-CoV-2/immunology , Pandemics , Follicle Stimulating Hormone/blood , Coronavirus Infections/immunology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Betacoronavirus
10.
EBioMedicine ; 103: 105132, 2024 May.
Article in English | MEDLINE | ID: mdl-38677182

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Subject(s)
COVID-19 , Cytokine Receptor gp130 , Disease Models, Animal , Interleukin-6 , Mice, Transgenic , SARS-CoV-2 , Signal Transduction , Animals , Interleukin-6/metabolism , COVID-19/metabolism , Humans , Mice , Signal Transduction/drug effects , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Lung/pathology , Lung/virology , Lung/metabolism , Endothelial Cells/metabolism , COVID-19 Drug Treatment , Betacoronavirus , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/metabolism , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus Infections/pathology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Severity of Illness Index
11.
Pol Merkur Lekarski ; 52(1): 60-66, 2024.
Article in English | MEDLINE | ID: mdl-38518235

ABSTRACT

OBJECTIVE: Aim: The purpose of this study was a clinical approbation of the Kometad drug (international non-proprietary name sodium colistimethate), an antibiotic from the polymyxin group in patients with severe course of confirmed сoronavirus infection in the intensive care unit of the Branch of the I. Zhekenova Municipal Clinical Infectious Diseases Hospital.. PATIENTS AND METHODS: Materials and Methods: The methodology is based on both theoretical and empirical methods of scientific cognition. During the study, the features of the Coronavirus infection and the inflammatory reaction syndrome were considered, which became quite a big problem during the pandemic. RESULTS: Results: The main indications for the tested drug and the consequences of its use for one age group were also determined. CONCLUSION: Conclusions: The conclusion was made about the positive dynamics of the patients' health status, and recommendations were given for further research in this area. The practical significance of this study lies in the first clinical approbation of the Kometad drug, which can be used in medicine to reduce the severity of the systemic inflammatory reaction syndrome and improve the patient's health as a result of the disease of Coronavirus infection, after further clinical trials of the drug with different age groups of patients.


Subject(s)
Coronavirus Infections , Humans , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Inflammation , Intensive Care Units , Syndrome , Anti-Bacterial Agents/therapeutic use
12.
Int J Nanomedicine ; 19: 2889-2915, 2024.
Article in English | MEDLINE | ID: mdl-38525012

ABSTRACT

Since the beginning of the coronavirus pandemic in late 2019, viral infections have become one of the top three causes of mortality worldwide. Immunization and the use of immunomodulatory drugs are effective ways to prevent and treat viral infections. However, the primary therapy for managing viral infections remains antiviral and antiretroviral medication. Unfortunately, these drugs are often limited by physicochemical constraints such as low target selectivity and poor aqueous solubility. Although several modifications have been made to enhance the physicochemical characteristics and efficacy of these drugs, there are few published studies that summarize and compare these modifications. Our review systematically synthesized and discussed antiviral drug modification reports from publications indexed in Scopus, PubMed, and Google Scholar databases. We examined various approaches that were investigated to address physicochemical issues and increase activity, including liposomes, cocrystals, solid dispersions, salt modifications, and nanoparticle drug delivery systems. We were impressed by how well each strategy addressed physicochemical issues and improved antiviral activity. In conclusion, these modifications represent a promising way to improve the physicochemical characteristics, functionality, and effectiveness of antivirals in clinical therapy.


Subject(s)
Coronavirus Infections , Virus Diseases , Humans , Antiviral Agents/therapeutic use , Pharmaceutical Preparations/chemistry , Virus Diseases/drug therapy , Coronavirus Infections/drug therapy , Drug Delivery Systems
13.
J Med Virol ; 96(3): e29512, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483056

ABSTRACT

Coronaviruses (CoVs) have continuously posed a threat to human and animal health. However, existing antiviral drugs are still insufficient in overcoming the challenges caused by multiple strains of CoVs. And methods for developing multi-target drugs are limited in terms of exploring drug targets with similar functions or structures. In this study, four rounds of structural design and modification on salinomycin were performed for novel antiviral compounds. It was based on the strategy of similar topological structure binding properties of protein targets (STSBPT), resulting in the high-efficient synthesis of the optimal compound M1, which could bind to aminopeptidase N and 3C-like protease from hosts and viruses, respectively, and exhibit a broad-spectrum antiviral effect against severe acute respiratory syndrome CoV 2 pseudovirus, porcine epidemic diarrhea virus, transmissible gastroenteritis virus, feline infectious peritonitis virus and mouse hepatitis virus. Furthermore, the drug-binding domains of these proteins were found to be structurally similar based on the STSBPT strategy. The compounds screened and designed based on this region were expected to have broad-spectrum and strong antiviral activities. The STSBPT strategy is expected to be a fundamental tool in accelerating the discovery of multiple targets with similar effects and drugs.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Cats , Mice , Swine , Humans , Antiviral Agents/chemistry , Coronavirus Infections/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry
14.
Br Poult Sci ; 65(2): 119-128, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38166582

ABSTRACT

1. Infectious bronchitis virus (IBV), a gamma-coronavirus, can infect chickens of all ages and leads to an acute contact respiratory infection. This study evaluated the anti-viral activity of palmatine, a natural non-flavonoid alkaloid, against IBV in chicken embryo kidney (CEK) cells.2. The half toxic concentration (CC50) of palmatine was 672.92 µM, the half inhibitory concentration (IC50) of palmatine against IBV was 7.76 µM and the selection index (SI) was 86.74.3. Mode of action assay showed that palmatine was able to directly inactivate IBV and inhibited the adsorption, penetration and intracellular replication of IBV.4. Palmatine significantly upregulated TRAF6, TAB1 and IKK-ß compared with the IBV-infected group, leading to the increased expressions of pro-inflammatory cytokines IL-1ß and TNF-α in the downstream NF-κB signalling pathway.5. Palmatine significantly up-regulated the levels of MDA5, MAVS, IRF7, IFN-α and IFN-ß in the IRF7 pathway, inducing type I interferon production. It up-regulated the expression of 2'5'-oligoadenylate synthase (OAS) in the JAK-STAT pathway.6. IBV infection induced cell apoptosis and palmatine-treatment delayed the process of apoptosis by regulation of the expression of apoptosis-related genes (BAX, BCL-2, CASPASE-3 and CASPASE-8).7. Palmatine could exert anti-IBV activity through regulation of NF-κB/IRF7/JAK-STAT signalling pathways and apoptosis, providing a theoretical basis for the utilisation of palmatine to treat IBV infection.


Subject(s)
Berberine Alkaloids , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Chick Embryo , Animals , Chickens/metabolism , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Infectious bronchitis virus/genetics , Signal Transduction , Janus Kinases/metabolism , Janus Kinases/pharmacology , Janus Kinases/therapeutic use , STAT Transcription Factors/metabolism , STAT Transcription Factors/pharmacology , STAT Transcription Factors/therapeutic use , Apoptosis , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary
15.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084960

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary , Molecular Docking Simulation , Nucleocapsid Proteins/metabolism , Pemetrexed/metabolism , Porcine epidemic diarrhea virus/physiology , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Swine , Swine Diseases/drug therapy
16.
Antiviral Res ; 221: 105766, 2024 01.
Article in English | MEDLINE | ID: mdl-38042417

ABSTRACT

Coronaviruses pose a permanent risk of outbreaks, with three highly pathogenic species and strains (SARS-CoV, MERS-CoV, SARS-CoV-2) having emerged in the last twenty years. Limited antiviral therapies are currently available and their efficacy in randomized clinical trials enrolling SARS-CoV-2 patients has not been consistent, highlighting the need for more potent treatments. We previously showed that cobicistat, a clinically approved inhibitor of Cytochrome P450-3A (CYP3A), has direct antiviral activity against early circulating SARS-CoV-2 strains in vitro and in Syrian hamsters. Cobicistat is a derivative of ritonavir, which is co-administered as pharmacoenhancer with the SARS-CoV-2 protease inhibitor nirmatrelvir, to inhibit its metabolization by CPY3A and preserve its antiviral efficacy. Here, we used automated image analysis for a screening and parallel comparison of the anti-coronavirus effects of cobicistat and ritonavir. Our data show that both drugs display antiviral activity at low micromolar concentrations against multiple SARS-CoV-2 variants in vitro, including epidemiologically relevant Omicron subvariants. Despite their close structural similarity, we found that cobicistat is more potent than ritonavir, as shown by significantly lower EC50 values in monotherapy and higher levels of viral suppression when used in combination with nirmatrelvir. Finally, we show that the antiviral activity of both cobicistat and ritonavir is maintained against other human coronaviruses, including HCoV-229E and the highly pathogenic MERS-CoV. Overall, our results demonstrate that cobicistat has more potent anti-coronavirus activity than ritonavir and suggest that dose adjustments could pave the way to the use of both drugs as broad-spectrum antivirals against highly pathogenic human coronaviruses.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Humans , Antiviral Agents/therapeutic use , Ritonavir/pharmacology , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/therapeutic use , Coronavirus Infections/drug therapy , Cobicistat/therapeutic use
17.
Antiviral Res ; 222: 105789, 2024 02.
Article in English | MEDLINE | ID: mdl-38158129

ABSTRACT

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a major threat to global health. Although the World Health Organization ended the public health emergency status, antiviral drugs are needed to address new variants of SARS-CoV-2 and future pandemics. To identify novel broad-spectrum coronavirus drugs, we developed a high-content imaging platform compatible with high-throughput screening. The platform is broadly applicable as it can be adapted to include various cell types, viruses, antibodies, and dyes. We demonstrated that the antiviral activity of compounds against SARS-CoV-2 variants (Omicron BA.5 and Omicron XBB.1.5), SARS-CoV, and human coronavirus 229E could easily be assessed. The inclusion of cellular dyes and immunostaining in combination with in-depth image analysis enabled us to identify compounds that induced undesirable phenotypes in host cells, such as changes in cell morphology or in lysosomal activity. With the platform, we screened ∼900K compounds and triaged hits, thereby identifying potential candidate compounds carrying broad-spectrum activity with limited off-target effects. The flexibility and early-stage identification of compounds with limited host cell effects provided by this high-content imaging platform can facilitate coronavirus drug discovery. We anticipate that its rapid deployability and fast turnaround can also be applied to combat future pandemics.


Subject(s)
Coronavirus Infections , Coronavirus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , High-Throughput Screening Assays/methods , Coloring Agents/pharmacology , Coloring Agents/therapeutic use , Pandemics
18.
Virology ; 589: 109923, 2024 01.
Article in English | MEDLINE | ID: mdl-37977082

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute, severe, highly contagious disease. Porcine epidemic diarrhea virus (PEDV) strains are prone to mutation, and the immune response induced by traditional vaccines may not be strong enough to be effective against the virus. Therefore, there is an urgent need to develop novel anti-PEDV drugs. This study aimed to explore the therapeutic effects of quercetin in PEDV infections in vitro (Vero cells) and in vivo (suckling piglets). Using transmission electron microscopy and laser confocal microscopy, we found that PEDV infection promotes the accumulation of lipid droplets (LDs). In vitro, studies showed that quercetin inhibits LD accumulation by down-regulating NF-κB signaling and IL-1ß, IL-8, and IL-6 levels, thereby inhibiting viral replication. In vivo, studies in pigs demonstrated that quercetin can effectively relieve the clinical symptoms and intestinal injury caused by PEDV. Collectively, our findings suggest that quercetin inhibits PEDV replication both in vivo and in vitro, which provides a new direction for the development of PED antiviral drugs.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Quercetin/pharmacology , Quercetin/therapeutic use , Vero Cells , Porcine epidemic diarrhea virus/physiology , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea
19.
Virus Res ; 339: 199260, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37923169

ABSTRACT

Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by α-coronavirus porcine epidemic diarrhea virus (PEDV). At present, no effective vaccine is available to prevent the disease. Therefore, research for novel antivirals is important. This study aimed to identify the antiviral mechanism of Veratramine (VAM), which actively inhibits PEDV replication with a 50 % inhibitory concentration (IC50) of ∼5 µM. Upon VAM treatment, both PEDV-nucleocapsid (N) protein level and virus titer decreased significantly. The time-of-addition assay results showed that VAM could inhibit PEDV replication by blocking viral entry. Importantly, VAM could inhibit PEDV-induced phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) activity and further suppress micropinocytosis, which is required for PEDV entry. In addition, PI3K inhibitor LY294002 showed anti-PEDV activity by blocking viral entry as well. Taken together, VAM possessed anti-PEDV properties against the entry stage of PEDV by inhibiting the macropinocytosis pathway by suppressing the PI3K/Akt pathway. VAM could be considered as a lead compound for the development of anti-PEDV drugs and may be used during the viral entry stage of PEDV infection.


Subject(s)
Coronavirus Infections , Phosphatidylinositol 3-Kinases , Porcine epidemic diarrhea virus , Swine Diseases , Veratrum Alkaloids , Virus Internalization , Animals , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Phosphatidylinositol 3-Kinases/metabolism , Porcine epidemic diarrhea virus/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Swine , Swine Diseases/drug therapy , Veratrum Alkaloids/metabolism , Veratrum Alkaloids/pharmacology , Vero Cells , Virus Internalization/drug effects
20.
Int Immunopharmacol ; 127: 111359, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38101217

ABSTRACT

Porcine deltacoronavirus (PDCoV), belonging to family Coronaviridae, genus Deltacoronavirus, can cause acute diarrhea in piglets, and also possesses cross-species transmission potential, leading to severe economic losses and threatening public health. However, no approved drug against PDCoV infection is available. Here, we investigated the antiviral effect of chlorogenic acid (CGA), the main active component of Lonicerae Japonicae Flos, against PDCoV infection. The results showed that CGA inhibited the replication of PDCoV significantly both in LLC-PK1 and ST cells, with a selectivity index greater than 80. CGA decreased the synthesis of PDCoV viral RNA and protein, and viral titers in a dose-dependent manner. The results of the time-of-addition assay indicated that CGA mainly affected the early stage of virus replication and viral release. Moreover, CGA significantly reduced apoptosis caused by PDCoV infection, and the application of apoptosis agonist and inhibitor revealed that apoptosis could promote progeny virus release. Further study demonstrated that CGA can inhibit virus release by directly targeting apoptosis caused by PDCoV infection. In conclusion, CGA is an effective agent against PDCoV, which provides a foundation for drug development for the treatment of PDCoV and other coronavirus infections.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Swine , Coronavirus/genetics , Coronavirus/metabolism , Deltacoronavirus , Chlorogenic Acid/pharmacology , Coronavirus Infections/drug therapy , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...